NEMS Update: Long-term Cost Algorithm

Renewable Energy Modeling Series
April 20, 2004

presented by Frances Wood OnLocation, Inc.

Summary

- Further detail added to NEMS regarding wind resources
 - Allows resource characterization (long term multipliers) to vary by wind class to accommodate
 - Different interconnection costs
 - Class 4 winds closer to load
 - Allows representation of low-wind speed turbine technology cost differences
- A version created including offshore wind

Current Treatment of Wind Supply Curves

- NEMS represents 3 wind classes within each of the 13 electricity regions
- Each wind class segmented into 3 transmission buffer zones with different interconnection costs
- Each region's wind resources characterized by 5 cost steps, independent of wind class
- Remaining resources decremented each year for amount already developed
- Higher class wind class sites assumed to be used first

Key Features of Revised Version

- Long term resource multipliers applied by wind class, instead of for the regional resource as a whole
- Competition performed to determine lowest cost wind class each year
- Reporting of results by wind class
- For now same multipliers as before applied to each wind class (placeholder)

Alternative Supply Steps

 In the revised version the resource multipliers are applied by wind class, not over the entire regional resource.

Reference Case Results 2025

 The new application of long-term multipliers is more restrictive, especially in the West.

Projected Wind Capacity 2025

 In several regions, more than one wind resource is developed.

Low Wind Speed Turbine R&D Case

 When R&D impacts are included, projected capacity increases substantially, especially for Class 4.

Further NEMS Alterations

- We have also modified NEMS to include offshore wind resources
- First quick method was to increase onshore wind resource quantities at higher cost multiplier levels
 - Difficult to reflect costs correctly over time
 - Direct competition with onshore wind
- More correct method implemented where offshore wind added as another technology
 - Allows offshore wind to compete directly with all potential generation sources
 - Similar to onshore wind representation, but separate data streams

Preliminary Offshore Results

 Depending on assumptions about offshore wind costs and PTCs, offshore wind capacity might provide a significant amount of capacity in the long term.

